Prediction of multidimensional time series based on Gs-rsr-sVr and its aPPlication in aGricultural economy
نویسندگان
چکیده
XIE, Y. G., H. Y. ZHANG, H. Y. WANG, L. F. WANG and ZH. M. YUAN, 2013. Prediction of multidimensional time series based on GS-RSR-SVR and its application in agricultural economy. Bulg. J. Agric. Sci., 19: 1327-1336 This paper proposes a method that creatively applies a Geo-statistics tool (GS) to complete fast and adequate order determination and introduces a novel algorithm, named Reasonable Sample Rejection (RSR) to realize rational sample selection. Then, combined with Support Vector Machine Regression (SVR), a high precision non-linear prediction method named GSRSR-SVR is proposed for multidimensional time series. The main steps of the novel method includes: 1) determine the order for the dependent variable of the training samples based on one-dimensional GS aftereffect duration (range), 2) screen the independent variables according to Leave-One-Out Cross Validation (LOOCV) based on the minimum Mean Squared Error (MSE), 3) reject some oldest training samples based on the minimum correlation coefficient of fitting absolute relative error of training sets of different rejected sizes and sample number. Three real-world datasets was used to test the effectiveness of GSRSR-SVR. The results show that GS-RSR-SVR has higher prediction precision and more stable prediction ability than MLR, ARIMA, CAR, BPNN, SVR and SVR-CAR.
منابع مشابه
Chaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملThe chaos differential evolution optimization algorithm and its application to support vector regression machine
The Differential Evolution (DE) population-based algorithm is an optimal algorithm with powerful global searching capability, but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaos Differential Evolution algorithm (CDE) based on the cat map is proposed which combines DE and chaotic searching algorithm. Firstly, the chaotic dist...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کامل